Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Engineering Applications of Artificial Intelligence ; 124:106511, 2023.
Article in English | ScienceDirect | ID: covidwho-20240412

ABSTRACT

This research attempts to study the Supplier Selection and Order Allocation Problem (SSOAP) considering three crucial concepts, namely responsiveness, sustainability, and resilience. To do so, the current research develops a Multi-Stage Decision-Making Framework (MSDMF) to select potential suppliers and determine the quantity of orders. The first stage aims at computing the scores of the suppliers based on several indicators. To do this, a novel decision-making approach named the Stochastic Fuzzy Best–Worst Method (SFBWM) is developed. Then, in the second stage, a Multi-Objective Model (MOM) is suggested to deal with supplier selection and order allocation decisions. In the next step, a data-driven Fuzzy Robust Stochastic (FRS) optimization approach, based on the fuzzy robust stochastic method and the Seasonal Autoregressive Integrated Moving Average (SARIMA) methods, is employed to efficiently treat the hybrid uncertainty of the problem. Afterwards, a novel solution method named the developed Chebyshev Multi-Choice Goal Programming with Utility Function (CMCGP-UF) is developed to obtain the optimal solution. Moreover, given the crucial role of the Medical Equipment (ME) industry in society's health, especially during the recent Coronavirus disease, this important industry is taken into account. The outcomes of the first stage demonstrate that agility, cost, GHG emission, quality, robustness, and Waste Management (WM), respectively, are the most important criteria. The outcomes of the second stage determine the selected suppliers, utilized transportation systems, and established sites. It is also revealed that demand directly affects all the objective functions while increasing the rate of disruptions has a negative effect on the sustainability measures.

2.
Omega ; 113: 102725, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1966969

ABSTRACT

This paper develops an approach to optimize a vaccine distribution network design through a mixed-integer nonlinear programming model with two objectives: minimizing the total expected number of deaths among the population and minimizing the total distribution cost of the vaccination campaign. Additionally, we assume that a set of input parameters (e.g., death rate, social contacts, vaccine supply, etc.) is uncertain, and the distribution network is exposed to disruptions. We then investigate the resilience of the distribution network through a scenario-based robust-stochastic optimization approach. The proposed model is linearized and finally validated through a real case study of the COVID-19 vaccination campaign in France. We show that the current vaccination strategies are not optimal, and vaccination prioritization among the population and the equity of vaccine distribution depend on other factors than those conceived by health policymakers. Furthermore, we demonstrate that a vaccination strategy mixing the population prioritization and the quarantine restrictions leads to an 8.5% decrease in the total number of deaths.

SELECTION OF CITATIONS
SEARCH DETAIL